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ABSTRACT 
This manuscript elucidates a novel Modified Dream Optimization 
Algorithm (mDOA). The foundational framework of the Dream 
Optimization Algorithm (DOA) is informed by the cognitive phenomena 
associated with human dreaming. These cognitive mechanisms 
(memory retention, forgetfulness, supplementation strategies, and 
dream sharing processes) are systematically encoded as an 
optimization agent designed to tackle global optimization dilemmas. 
The DOA is afflicted by the challenge of an imbalance between 
exploration and exploitation, exhibiting a higher propensity for 
exploration than for exploitation, which results in an elevated likelihood 
of becoming ensnared in local optima. The enhancement of mDOA 
was achieved through the integration of a Levy flight variant to boost 
the exploitation phase. The efficacy of mDOA is evaluated against six 
prominent metaheuristics utilizing ten benchmark test functions 
(Schwefel, Ackley, Michalewicz, Griewank, Pathologic, Rastrigrin, 
Rosenbrock, Schaffer, Sphere, and Bohachevsky1), it demonstrated 
85% enhancement in its convergence towards global optima. From the 
simulation results obtained, it shows that the mDOA succeeded in 
attaining the optimal global solution in 7 out of 10 cases, constituting 
70.0% of the benchmark functions. Conversely, the 0ther algorithms 
used achieved 3 out of 10 cases, representing 30.0% of the 
benchmark functions. These shows an improvement in the mDOA.  

 
INTRODUCTION 
  The use of nature-inspire optimization 
methodologies in recent years has demonstrated 
efficiency in addressing different types of 
optimization issues with considerable 
performance [1]. Optimization comprises a 
systematic approach for initiating solutions to 
challenges that are confined by specific limitations 
through the most effective utilization of available 
resources. The same outcome is produced by 
decisive search algorithms if the inceptive 
conditions remain the same. Even when the initial 
conditions remain stable, stochastic algorithms 
generate definite solutions every time they run 

because there is   irregular in their search 
procedure [2]. Universal optimization algorithms, 
analytical intelligence, and contemporary soft 
computing paradigms extensively depend on 
metaheuristic approaches that are inspired by 
natural phenomena. Optimization algorithms 
come in two varieties: deterministic and 
stochastic. [3].  
  Past studies as classified Stochastic 
algorithms as either heuristic or metaheuristic. 
The heuristic methodology is limited to a single 
type of optimization problem, making them 
problem dependent. The metaheuristic-based 
search algorithm is problem-independent 
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universal problem solver algorithm that is used to 
tackle a variety of optimization problems [4]. The 
metaheuristic search algorithms combine 
exploitation (intensification) and exploration 
(diversification). To find the optimal local solutions 
inside the search space, the algorithm is directed 
by the exploration process. The exploitation 
procedure directs the algorithm to search among 
the generated local optimal for the global optimum 
solution. In finding a balance between exploration 
and exploitation, the metaheuristic search 
algorithm can connect with the global optimum 
result [5].  
  Metaheuristic search algorithms draw 
inspiration from biological systems. Numerous 
optimization challenges have been solved using 
these nature-inspired metaheuristic search 
algorithms [6]. Particles swarm are an illustration 
of a metaheuristic search algorithm influence by 
nature. Swarms of birds and fish shoal served as 
inspiration for swarm optimization [7]. However, 
classical PSO still has some weaknesses, such as 
poor local search that may lead to traps in local 
minimum affecting the convergence performance 
that results in uncertainties in the outcomes 
obtained[8]. 
  The firefly algorithm simulates flashing 
behavior of fireflies [9], while the cat swarm 
optimization algorithm imitates the hunting and 
stalking manners of cats towards their target [10], 
The echolocation behavior of microbats is 
mimicked by bat algorithms [11], while the 
foraging behavior of ant colonies is mimicked by 
ant colony optimization algorithms [12]. The 
Dream Optimization Algorithm (DOA) was 
motivated by desire [13], which shares many 
properties with the optimization process in 
metaheuristic algorithms, including partial 
memory retention, forgetting, and logical self-
organization.  
  To stabilize exploration and exploitation, 
DOA incorporate a fundamental memory method, 
a forgetting and supplementing technique, and a 
dream-sharing strategy to enhance the amplitude 
to escape local optima. Exploration and 
exploitation phases make up the optimization 
process, which produces good optimization 
outcomes. According to the literature review, DOA 

offers potential benefits over other metaheuristic 
algorithms including Particle Swarm Optimization 
(PSO) [14], Grey Wolf Optimization (GWO) [15], 
Sparrow Search Algorithm (SSA) [16], 
Differentiated Creative Search (DCS) [17], Great 
Wall Construction Algorithm (GWCA) [18], and 
Whale Optimization Algorithm (WOA) [19], among 
others. Strong convergence, progress, stability, 
adaptability, resilience, and reliability to initial 
control parameter values are some of these 
benefits. The dream optimization method still has 
an imbalance issue despite these many benefits, 
allying exploration and exploitation because of the 
continual impact of control settings, optimization 
hyperspace, and incomplete knowledge. 
  The paper employed levy flying process 
to produce an improved Dream Optimization 
Algorithm. The capacity of the mDOA algorithm 
was estimated to be using ten (10) standard test 
functions, the outcome of the results was contrast 
to those of the traditional DOA, White Shark 
Optimization (WSO), Seagull Optimization 
Algorithm (SOA), Sunflower Optimization (SFO), 
Golden Jackal Optimization (GJO) and African 
Vultures Optimization Algorithm (AVOA). 
Comparison demonstrated the dominance of the 
mDOA algorithm over the other algorithm. The 
contribution of this paper is the modification of 
DOA using levy flight variant. 
  The report's remaining sections are 
assembled as follows: Section 2 introduces the 
DOA algorithm and its levy flight. In Section 3, the 
proposed mDOA result is shown. In Section 4, the 
effectiveness of mDOA is evaluated and 
compared to the traditional DOA and others 
algorithms approach. 
 
RESEARCH DESIGN METHOD 
 
Concept of  DOA Algorithm 
 
Optimization algorithm assumptions  
  When integrating the attributes of 
human aspirations with the principles of 
optimization algorithms, we delineate the 
subsequent four postulations: 

1. Fitness values can be used to assess 
the quality of dreams. 
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2. The basis of pre-existing memories is 
intimately linked to the beginning of a 
dream. 

3. People add logically self-organized 
information to partially forgotten 
memories. 

4. Memory capacities are rather 
unpredictable and vary between 
people or groups. 

 
  The dream optimization method is 
developed based on these fundamental 
presumptions. These four underlying 
presumptions are reflected in the procedural 
architecture, exploration phase, and various 
approaches used during the algorithm's 
development phase. 
 
Initialization phase 
  In order to initiate the algorithm's 
optimisation process, mDOA first creates a 
random sample inside the search space called the 
initial sample. The initial sample can be acqured 
using equation 1: 
𝑋𝑖 = 𝑋𝑙 + 𝑟𝑎𝑑 × (𝑋𝑢 − 𝑋𝑙),   𝑖 =
1,2, … … … . 𝑁              (1) 
 
where 𝑁 is the number of individuals, i.e., the 
sample size. 𝑋𝑖 is the 𝑖𝑡ℎ individual in the sample; 

𝑋𝑢 and 𝑋𝑙 for the lower and upper boundaries of 
the search space, accordingly. The resulting 
sample can be shown as follows: 𝑟𝑎𝑑 is a Dim-
dimensional vector, where each proportion is a 
random number between 0 and 1. 
 

𝑋 = [

𝑋1

𝑋2

𝑋𝑁

] = [

𝑋11 ⋯ 𝑋1,𝐷𝑖𝑚

⋮ ⋱ ⋮
𝑋𝑁,1 ⋯ 𝑋𝑁,𝐷𝑖𝑚

]               (2) 

 
 
 
Where  𝑋𝑖𝑗 , denotes the location of the  𝑖𝑡ℎ 

individual in the  𝑗𝑡ℎ  dimension, and Dim denotes 
the dimensionality of the optimization issue. 
 
Exploration Phase 
  The formulas and particular update 
mechanism are as follows: 

Memory strategy 
  First, group q members can reset their 
formation by recalling the formation position of 
their group's best member before dreaming, 
according to the foundational memory technique. 
position to that of the best member of the group: 

𝑋𝑖
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡𝑞

𝑡    (2) 

 

Where 𝑋𝑖
𝑡+1 denotes the 𝑖𝑡ℎ person at iteration  

𝑡 + 1 and 𝑋𝑏𝑒𝑠𝑡𝑞
𝑡  denotes the best individual in 

group 𝑞 at iteration  𝑡. 
 
Forgetting and supplementation strategy 
  The forgetting and supplementing 
approach combines local and global search 
capabilities. This strategy, which is like the 
memory technique, enables people to self-
organize and forget the position information in the 
forgetting dimensions. The following is the revised 
formula: 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡𝑞𝑗

𝑡 + (𝑋𝑖𝑗 + 𝑟𝑎𝑛𝑑 × (𝑋𝑢𝑗 −

𝑋𝑙𝑗)) ×
1

2
× (cos (𝜋 ×

𝑡+𝑇𝑚𝑎𝑥−𝑇𝑑

𝑇𝑚𝑎𝑥
) +

1) ,    𝑗 = 𝐾1, 𝐾2 … … … . . 𝐾𝑘𝑞
          (3) 

 

Where 𝑋𝑖𝑗
𝑡+1 1; tthe position of the 𝑖𝑡ℎ individual 

in the 𝑗𝑡ℎ dimension at iteration 𝑡 + 1: the  

𝑋𝑏𝑒𝑠𝑡𝑞𝑗
𝑡  indicate a position of the best location in 

group 𝑞 in the 𝑗𝑡ℎ dimension at iteration t; 𝑋𝑙𝑗  and 

𝑋𝑢𝑗  represent the minimum and maximum 

bounds of the search space in the 𝑗𝑡ℎ dimension, 

respectively; 𝑟𝑎𝑛𝑑 is a random number between 
0 and 1;t is the current iteration number, 𝑇𝑚𝑎𝑥  is 

the maximum number of iterations, and  𝑇𝑑  is the 
maximum number of iterations during the 
exploration phase. 
 
Dream-sharing strategy 
  In mDOA, the dream-sharing technique 
improves the capacity to break out of local optima. 
People can randomly gather position information 
from others in the forgetting dimensions using this 
method, which functions in agreement with the 
forgetting and augmenting methods and follows 
the memory strategy. The following is the update 
formula: 
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𝑋𝑖𝑗
𝑡+1 = {

𝑋𝑚𝑗,
𝑡+1 𝑚 ≤ 𝑖

𝑋𝑚𝑗,
𝑡  𝑖 < 𝑚 ≤ 𝑁

    𝑗 =

𝐾1, 𝐾2, … … … 𝐾𝑘𝑞
             (4) 

 

Where 𝑋𝑖𝑗
𝑡+1, is the location of the ith person in the 

jth dimension at iteration t+1; m is a arbitrarily 
chosen natural number  from the range [1,N] for 
each dimension update. 
 
Exploitation Phase 
  The Levy Flight (LF) was used to 
enhance the exploitation phase; grouping is no 
longer done throughout the stage of development 
(iteration count from  𝑇𝑑  to 𝑇𝑚𝑎𝑥). The population 
shows the best dream from the past iterations of 
the entire population or the best individual from the 
previous iterations before each dreaming session. 
Each person's whereabouts in the forgetting 
dimensions is then updated. The number of 
forgetting dimensions  𝑘𝑟 is the same for every 
member of the population. The locations in the 𝑘𝑟 
forgetting dimensions—designated as 
𝐾1, 𝐾2, … … … 𝐾𝑘𝑟

 are updated once they are 

randomly chosen from the D dimensions.  
  The improving method is like Equation 
(2) and (3), with the update formula as follows: 

a. Memory strategy 

𝑋𝑖
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡

𝑡             (5) 

 

where 𝑋𝑖
𝑡+1  is the 𝑖𝑡ℎ individual at iteration  𝑡 +

1 ,and  𝑋𝑏𝑒𝑠𝑡
𝑡  indicate the best person of the 

sample at a given iteration  𝑡. 
 
Forgetting and supplementation strategy 
 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡𝑗

𝑡 + (𝑋𝑖𝑗 + 𝑟𝑎𝑛𝑑 × (𝑋𝑢𝑗 −

𝑋𝑙𝑗)) ×
1

2
× (cos (𝜋 ×

𝑡

𝑇𝑚𝑎𝑥
) + 1) ,    𝑗 =

𝐾1, 𝐾2 … … … . . 𝐾𝑘𝑟
           (6) 

 

Where 𝑋𝑖𝑗
𝑡+1  is the position of the 𝑖𝑡ℎ individual 

in the 𝑗𝑡ℎ dimension at iteration 𝑡 + 1,   

𝑋𝑏𝑒𝑠𝑡𝑗 
𝑡 denotes the position of the best  person of 

the entire population in the 𝑗𝑡ℎ  dimension at 

iteration  𝑡; 𝑋𝑙𝑗  and 𝑋𝑢𝑗  are the minimum and 

maximum bounds of the search space in the 𝑗𝑡ℎ 

dimension, respectively; 𝑟𝑎𝑛𝑑  is a arbitra 
number between 0 and 1; 𝑡   is the current iteration 

number, and 𝑇𝑚𝑎𝑥   is the maximum number of 
iterations for the algorithm. 
  In a similar vein, Eq. (5) demonstrates 
that in dimensions other than  
𝐾1, 𝐾2 … … … . . 𝐾𝑘𝑟

 individuals are able to 

preserve the exact placements in these 
dimensions while dreaming by recalling the 
position information of the best position in the 
population during prior iterations.Equation (6) 
demonstrates that in dimensions 
𝐾1, 𝐾2 … … … . . 𝐾𝑘𝑟

 , people forget the location 

of the population's finest person during the prior. 
 
Levy Flight Algorithms 
  A Levy flight algorithm represents a 
specific variant of random walk distinguished by 
step lengths that adhere to a Levy distribution, 
which is characterized by a power-law tail, 
resulting in infrequent long jumps interspersed 
with shorter movements. This distinctive pattern is 
employed in numerous optimization algorithms, 
especially within the realm of mathematics, to 
augment both exploration and exploitation 
capabilities. The functionalities of the Levy flight 
are operationalized as 
 

𝐿𝑒′𝑣𝑦(𝑛, 𝑑) =
𝑢

|𝑣|1 𝛽⁄ , 𝑢~𝑁(0, 𝜎2),

𝑣~𝑁(0,1)               (7) 
 
Where  𝛽 = 1.5 and 𝜎 is computed as: 

(
Γ(1+𝛽).sin(

𝜋𝛽
2⁄ )

Γ(
1+𝛽

2
).𝛽.2

𝛽−1
2

)

1 𝛽⁄

            (8) 

 
  In the foundational dream optimization 
algorithm, the methodology demonstrates a robust 
capacity for exploitation; however, it is susceptible 
to becoming entrenched in local optima. To 
mitigate this challenge, the paper incorporates a 
Lévy flight strategy into the exploitation phase to 
improve the convergence rate. Below is table 1 
and 2 showing the pseudocode for both the 
standard Dream Optimization Algorithm and the 
modified version, denoted as DOA-LF. 
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Table 1 : Standard DOA Pseudo-code 

Algorithm 1 Pseudo-code of DOA 

Input : Population size (𝑁𝑚𝑎𝑥) the lower limit 

of variables (𝑋𝑙),  the upper limit of variables 
(𝑋𝑢), size of problem (𝐷𝑖𝑚), the current 
number of iteration (𝑡), the number of iteration 

as a demaracation (𝑇𝑑), the maximum number 

of iteration (𝑇𝑚𝑎𝑥), forgetting dimensions of 
each group and of exploitation 
(𝑘1, 𝑘2, 𝑘3, 𝑘4 𝑘5, 𝑘𝑟) 

Output: the best solution  𝑋𝑏𝑒𝑠𝑡  and the 
minimum fitness  𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡  

1. Generate an initial population 
𝑋 𝑜𝑓 𝑁 individuals using Eqs. (2)and (3) 

2. Check the bounds of the solutions 

3. Evaluate the fitness of the solution 

4. Detect the best solution 𝑋𝑏𝑒𝑠𝑡  and the minimum fitness   𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡  

5. Define the current iteration 𝑡 =
1 

6. while 𝑡 < 𝑇𝑑  𝑑𝑜 

7. Update the best solution  𝑋𝑏𝑒𝑠𝑡  and the minimum fitness   𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛 
8. 𝐟𝐨𝐫  𝑞 = 1 ∶ 5 𝑑𝑜 

9. Update the best solution  𝑋𝑏𝑒𝑠𝑡  and the minimum fitness   𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛𝑞  

10. Update 𝑘𝑞  using Eq. (10) 

11. Update 𝑋𝑖
𝑖+1 using Eq. (4) 

12. (𝐾1, 𝐾2, … … 𝐾𝑘𝑞
) =

𝑟𝑎𝑑 𝑝𝑒𝑟𝑚(𝑘𝑞 , 𝑁) 

13. 𝑓𝑜𝑟 𝑖 =
(((𝑞 − 1)

(5 × 𝑁)⁄ +

1) ∶ (
𝑞

5 × 𝑁)⁄  𝑑𝑜 

14. 𝑖𝑓 𝑟𝑎𝑑 < 𝑢 𝑡ℎ𝑒𝑛 

15. Update 𝑥𝑖,𝑗  using Eq. (5) 

16. Check the bound of𝑥𝑖,𝑗  

17. 𝐞𝐥𝐬𝐞 

18. Update 𝑥𝑖,𝑗  using Eq. (6) 

19.      𝐞𝐧𝐝 𝐢𝐟 
20. 𝐞𝐧𝐝 𝐟𝐨𝐫 

21. 𝐞𝐧𝐝 𝐟𝐨𝐫 

22. Update the current number of iteration 𝑡 𝑏𝑦 𝑡 =
𝑡 + 1 

23. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

24. while 𝑡 < 𝑇𝑑  𝑎𝑛𝑑 𝑡 < 𝑇𝑚𝑎𝑥𝑑𝑜 
25. Update 𝑘𝑟  using Eq. (11) 

26. Update 𝑋𝑖
𝑡+1 using Eq. (7) 

Algorithm 1 Pseudo-code of DOA 

27. (𝐾1, 𝐾2, … … 𝐾𝑘𝑟
) =

𝑟𝑎𝑑 𝑝𝑒𝑟𝑚(𝑘𝑟 , 𝑁) 

28. 𝐟𝐨𝐫 𝑖 = 1 ∶ 𝑁 𝑑𝑜 

29. Update 𝑥𝑖,𝑗  using Eq. (8) 

30. Check the bound of 𝑥𝑖,𝑗  

31. 𝐞𝐧𝐝 𝐟𝐨𝐫 

32. Update the current number of iteration 𝑡 𝑏𝑦 𝑡 =
𝑡 + 1 

33. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

 
Table 2: DOA with Levy Flight (DAO-LF) Pseudo-
code 

Algorithm 1 Pseudo-code of DOA with Levy 
Flight Enhancement 

1. 1nput : population size, iterations T, 
bounds lb, ub, dimension D, 
objective function fobj 

2. Initialise: 
3. 𝑥 ←

random poputation in [𝑙𝑏, 𝑢𝑏] 

4. 𝑓𝑏𝑒𝑠𝑡𝑑[𝑚] ← ∞, 𝑠𝑏𝑒𝑠𝑡𝑑[𝑚] ←
𝑒𝑚𝑝𝑡𝑦, 𝑓𝑜𝑟 𝑚 = 1 … 5 

5. 𝑓𝑏𝑒𝑠𝑡[𝑚] ← ∞, 𝑠𝑏𝑒𝑠𝑡𝑑[𝑚] ←
𝑒𝑚𝑝𝑡𝑦, 𝑓𝑜𝑟 𝑚 = 1, … … . .5 

6. 𝑓𝑏𝑒𝑠𝑡ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← 𝑧𝑒𝑟𝑜𝑠(𝑇) 

7. 𝑓𝑜𝑟 𝑖 = 1 →
[0.9𝑇]𝑑𝑜                                                                     ⋯ 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 

8. 𝑓𝑜𝑟 𝑚 = 1 → 5 𝑑𝑜 

9. 𝑘 ←

𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖𝑛 [[𝐷(8𝑚)], [
𝐷

3𝑚
]] 

10. for each solution 𝑗 in subgroup 𝑚 do 

11. 𝑓𝑖𝑡 ← 𝑓𝑜𝑏𝑗 (𝑥𝑗) 

12. if 𝑓𝑖𝑡 < 𝑓𝑏𝑒𝑠𝑡𝑑[𝑚]𝑡ℎ𝑒𝑛 

13.  𝑓𝑏𝑒𝑠𝑡𝑑[𝑚] ←
𝑓𝑖𝑡, 𝑠𝑏𝑒𝑠𝑡𝑑[𝑚] ← 𝑥𝑗  

14.  end if  
15. end for  
16. for each solution 𝑗 in subgroup 𝑚 do 

17.  𝑥𝑗 ← 𝑠𝑏𝑒𝑠𝑡𝑑[𝑚] 

18. Choose 𝑘 random dimensions in  

19.  if  rand < 0.9 then 

20. 𝑠𝑡𝑒𝑝 ← Levy Flight (1.5D) 

21. for each ℎ ∈ 𝑖𝑛  do 
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Algorithm 1 Pseudo-code of DOA with Levy 
Flight Enhancement 

22. 𝑥𝑗 [h] ← 𝑥𝑗 [h]+0.01 

𝑠𝑡𝑒𝑝[h].(𝑢𝑏[ℎ] −

𝑙𝑏[ℎ]).
cos(𝑖+

𝑇
10𝜋

𝑇
)+1

2
 

23. Apply boundary chech 
24.  end for 
25. else 
26. for each ℎ ∈ 𝑖𝑛 do 

27. 𝑥𝑗[ℎ]  ← random element from 

populatin 
28. 𝑒𝑛𝑑 𝑓𝑜𝑟 
29. end if 
30. end for 
31. if 𝑓𝑏𝑒𝑠𝑡𝑑[𝑚] < 𝑓𝑏𝑒𝑠𝑡 then 

32. 𝑓𝑏𝑒𝑠𝑡 ← 𝑓𝑏𝑒𝑠𝑡𝑑[𝑚], 𝑠𝑏𝑒𝑠𝑡 ←
𝑠𝑏𝑒𝑠𝑡𝑑[𝑚] 

33. 𝒆𝒏𝒅 𝒊𝒇 
34. end for 
35. 𝑓𝑏𝑒𝑠𝑡_ℎ𝑖𝑠𝑡𝑜𝑟𝑦[𝑖] ← 𝑓𝑏𝑒𝑠𝑡 
36. end for 
37. 𝑤𝑙𝑒𝑣𝑦 ← 0.5                                                                       

…Weight fot Levy steps 
38. for 𝑖 = [0.9𝑇] + 1 → 𝑇 do                                               

….Exploitation phase 
39. for 𝑝 = 1 → 𝑝𝑜𝑝 do 

40. 𝑓𝑖𝑡 ← 𝑓𝑜𝑏𝑗(𝑥𝑝) 

41. if  𝑓𝑖𝑡 < 𝑓𝑏𝑒𝑠𝑡 then 

42. 𝑓𝑏𝑒𝑠𝑡 ← 𝑓𝑖𝑡, 𝑠𝑏𝑒𝑠𝑡 ← 𝑥𝑝 

43. 𝒆𝒏𝒅 𝒊𝒇 
44. end for 
45. for 𝑗 = 1 → 𝑝𝑜𝑝 do 

46. 𝑘 ←

𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖𝑛 [2. max (2 [
𝐷

3
])] 

47. 𝑥𝑗 ← 𝑠𝑏𝑒𝑠𝑡 

48. Choose 𝑘 random dimensions in  
49. for each ℎ ∈ in do 

50. if rand < 𝑤𝑙𝑒𝑣𝑦 then 

51. 𝑠𝑡𝑒𝑝 ←Levy Flight (1.5,D) 

52. 𝑥𝑗 [h] ← 𝑥𝑗 [h]+0.01 

𝑠𝑡𝑒𝑝[h].(𝑢𝑏[ℎ] −

𝑙𝑏[ℎ]).
cos(𝑖𝜋+𝑇)+1

2
 

53. 𝑒𝑙𝑠𝑒 

Algorithm 1 Pseudo-code of DOA with Levy 
Flight Enhancement 

54. 𝑥𝑗 [h] ← 𝑥𝑗 [h]+0.01 

𝑟𝑎𝑛𝑑. (𝑢𝑏[ℎ] −

𝑙𝑏[ℎ]).
cos(𝑖𝜋+𝑇)+1

2
 

55. end if 
56. Apply boundary check                          1 
57. end for 
58. end for 
59. 𝑓𝑏𝑒𝑠𝑡_ℎ𝑖𝑠𝑡𝑜𝑟𝑦[𝑖] ← 𝑓𝑏𝑒𝑠𝑡 

 

 
Code comparison to other levy flight 
developed optimization algorithms 
  This paper applied the Levy Flight at the 
exploitation phase. The modification is as follows: 
 

a. Modify the forgetting and 
supplementation strategy equation 
using levy flight, from equation 6 of the 
standard DOA using equation 8 for 
specific variant of random walk at 
exploitation phase to enhance the 
convergence speed. 

b. evaluate performance against existing 
algorithms with parameters such as 
convergences speed, efficiency, and 
robustness. 

c. The Levy step size is uniquely scaled by 

a cosine-wave term,
cos(,)+1

2
 which 

creates a smooth, oscillatory, and non-
linear decay of step length over 
iterations, differing from standard static 
or linearly decreasing scales. 

d. The number of dimensions (𝑘) to 
perturb using Levy flights is dynamically 
and differently calculated per subgroup 
during exploration, making the search 
effort adaptive to the subgroup's role 
and problem dimension. 

e. The use of Levy flight differs 
fundamentally between phases: in 
exploration, it's applied around 
subgroup-best solutions (sbestd[m]) 
and competes with random 
replacement, while in exploitation, it's 
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applied more directly around the global 
best (sbest) with deterministic weighting 

 
Evaluation Method 
  The capacity of any improved or 
developed optimization algorithm is evaluated 
using benchmark functions, which are applied 
mathematical functions. As algorithms are created 
to address real-world engineering optimization 
issues, this is seen to be crucial. The set of ten 
standard test functions given in Table 3 were 
carefully selected to effectively measure the 
capacity of developed mDOA algorithms. The 
mDOAs performance measures of interest are 
listed as follows. 
  Execution speed: a gauge of how fast 
the mDOA algorithm variation can find the best 
convergence. The precision of the solution, which 
quantifies how closely each mDOA's results 
resemble the ideal; The convergence rate: This is 
utilized to ascertain when the corresponding 
mDOAs find their answer. 
 
Table 3: Ten-Dimensional Standard Functions 
[20] 

Fn Names Description 

F1 Shere 
function 
[21] 
 

2

1

( )
d

i

i

f x x
=

=
 

F2 Schwefe
l function 
[22] 
 

( ) ( ) ( )
0.530 2

0.1
2 2 2 2

1 1

1

sin 50
i i i i

i

f x x x x x
+ +

=

  = + +    


 

F3      Rosenbr
ock  
Function 
[23] 

1
2 2 2

1

1

( ) (( 1) 100( ) )
n

i i i

i

f x x x x
−

+

=

= − + −
 

F4 Rastrigin 
Function 
[24] 

2

1

( ) 10 [ 10 cos(2 )],
n

i i

i

f x n x x
=

= + −
 

F5 Griewan
k 
 
Function 
[25] 

2

1 1

1
( ) cos( ) 1

4000

nn

i

i

i i

x
f x x

i= =

= − + 
 

F6  Ackley 
function 
[26] 
 

( ) ( )
2

1 1

1 1 1
2 exp exp cos 2 20

5

n n

ii
i i

f X o x e
n n

x 
= =

   
= − − − + +   

   
 

 

Fn Names Description 
F7 

 

F8 

 

F9 

 

F10 

Michale
wicz 
function 
[27] 
Bohache
vsky1 
function 
[28] 
Schaffer 
function 
[29] 
Patholog
ic 
function 
[30] 
 

2

2

1

( ) sin( ) sin
d

m i

i

i

ix
f x x

=

 
= −  

 


2 2

1 2 1 2 1 2
( , ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7f x x x x x x = + − − +

 

( ) ( ) ( )
0.530 2

0.1
2 2 2 2

1 1

1

sin 50
i i i i

i

f x x x x x
+ +

=

  = + +    


 
𝑓(𝑥)

= ∑(0,5

𝑛

𝑛=1

+

sin (√100𝑥𝑖
2 + 𝑥𝑖≠1

2 )

2

− 0.5)

(1 + 0.001(𝑥𝑖
2 − 2𝑥𝑖𝑥𝑖≠1 + 𝑥𝑖=1

2 )2
)2 

 
RESULTS ANALYSIS 
 
Convergence Comparison of mDOA  
  The mDOA has shown a better 
convergence in comparison with some of the 
algorithms used as shown in figures below. The 
mDOA shows vibrances in convergence with other 
algorithms used such as standard DOA, WSO, 
SOA, SFO, GJO and AVOA on standard 
functions. For the unimodal and multimodal 
standard function, the standard deviation, mean, 
and best values attained by mDOA and other 
algorithms are shown in Tables 4 and 5. 
Furthermore, Figures 1 and 2 show how best 
mDOA and other algorithms perform in 
comparison with unimodal and multimodal 
standard functions. 
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Figure 1: Unimodal Standard Functions 
 
  Figure 1 shows the Sphere, Griewank, 
and Schwefel's 2.2 unimodal standard functions. 
Table 4 provides comprehensive details about 
their mean, standard deviation, and best values. 
The global minimum noted in Table 4 is quite close 
to the ideal value attained by mDOA. Notably, the 
energy function added in equation (8) allows 
mDOA to perform better than the three algorithms 
across all standard functions of unimodal in terms 
of mean values and standard deviation. It's 
important to note, though, that mDOA shows 
some superior exploitation potential for the 
Schwefel's2.22 function. 
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      Figure 2: multimodal Standard Functions  
 
  The multimodal standard functions 
depicted in Figure 2 include Rosenbrock, 
Rastrigin, Michalewicz, Rosenbrock, 
Bohachevsky1, Schaffer, and Pathologic 
functions. The statistical analysis regarding their 
standard deviation, mean, and best values can be 
found in Table 5. The optimal value achieved by 
mDOA, as indicated in Table 5, closely 
approximates the global minimum highlighted, 
except for the Ackley, Michalewicz and 
Rosenbrock function. The mDOA has better 
exploitative ability compared to the DOA and other 
five algorithms in comparison. It exhibits better 
exploitation and exploration abilities for the Step 
function. 

Table 4: Unimodal Standard Functions 
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Function 
(Fn) 

 DOA-LF DOA WSO SFO SOA GJO AVOA Global 
minimu

m  
function 

value 
Sphere Best 

Mean 
Std 
Dev 

4.0265e-03 
2.8503e-02 
 
2.3109e-02 

 
1.6706e-01 
2.7535e-01 
7.8468e-02 

4.0266e-03 
 
2.8503e-02 
2.3109e-02 

1.6706e-01 
 
2.7535e-01 
 
7.8468e-02 

4.0266e-03 
2.8503e-02 
2.3109e-02 

1.6706e-01 
2.7535e-01 
7.8468e-02 

1.6706e-01 
2.7535e-01 
7.8468e-02 

0 

Schwefel2.2 Best 
Mean 
Std 
Dev 

 
8.8727e-02 
1.4009e+0
1 
2.1106e+0
1 

1.2339e+0
0 
1.6050e+0
0 
2.2127e-01 

8.8827e-02 
 
1.4009e+0
1 
2.1106e+0
1 

1.2339e+0
0 
1.6050e+0
0 
2.2127e-01 

8.8727e-02 
1.4009e+0
1 
2.1106e+0
1 
 

 
1.2339e+0
0  
 
1.6050e+0
0 
2.2127e-01 

1.2339e+0
0 
1.6050e+0
0 
2.2127e-01 

0 

Griewank Best 
Mean 
Std 
Dev 

4.2316e-04 
4.6401e-03 
6.4389e-03 

1.4267e-02 
3.0762e-02 
1.3988e-02 

4.2326e-04 
4.6401e-03 
 
6.4389e-03 

1.4267e-02 
3.0762e-02 
1.3988e-02 

4.2326e-04 
4.6401e-03 
6.4389e-03 

1.4267e-02 
3.0762e-02 
1.3988e-02 

1.4267e-02 
3.0762e-02 
1.3988e-02 

0 

 
Table 5: Multimodal Standard Functions 

Function (Fn)  DOA-LF DOA WSO SFO SOA GJO AVOA Global 
minimu

m 
function 

value 

Michalewicz  
Best 
Mea
n 
Std 
Dev 

-
2.8797e+0
1 
-
2.8282e+0
1 
3.5005e-01 

 
-
2.7537e+0
1 
-
2.6672e+0
1 
5.8910e-01 

-
2.8797e+0
1 
-
2.8282e+0
1 
 
 
3.5005e-01 

-
2.7537e+0
1 
-
2.6672e+0
1 
5.8910e-01 

-
2.8797e+0
1 
-
2.8282e+0
1 
3.5005e-01 

-
2.7537e+0
1 
-
2.6672e+0
1 
5.8910e-01 

-
2.7537e+0
1 
-
2.6672e+0
1 
5.8910e-01 

−8.22015 

Rosenbrock  
Best 
Mea
n 
Std 
Dev 

2.7636e+0
2 
 
2.8630e+0
4 
8.5402e+0
4 

1.5119e+0
2 
3.9598e+0
2 
 
2.2181e+0
2 

 
2.7636e+0
2 
2.8630e+0
4 
8.5402e+0
4 

 
1.5119e+0
2 
3.9598e+0
2 
2.2181e+0
2 

 
2.7636e+0
2 
2.8630e+0
4 
8.5402e+0
4 

 
1.5119e+0
2 
3.9598e+0
2 
2.2181e+0
2 

 
1.5119e+0
2 
3.9598e+0
2 
2.2181e+0
2 

0 

Rastrigin Best 
Mea
n 
 
Std 
Dev 

2.3966e+0
1 
3.7232e+0
1 
8.6681e+0
0 

2.7677e+0
1 
4.2162e+0
1 
8.1255e+0
0 

 
2.3966e+0
1 
3.7232e+0
1 
8.6681e+0
0 

 
2.7677e+0
1 
4.2162e+0
1 
8.1255e+0
0 

 
2.3966e+0
1 
3.7232e+0
1 
8.6681e+0
0 

 
2.7677e+0
1 
4.2162e+0
1 
8.1255e+0
0 

 
2.7677e+0
1 
4.2162e+0
1 
8.1255e+0
0 

0 

Ackley Best 
Mea
n 
Std 
Dev 

1.9998e+0
1 
2.0000e+0
1 
8.2108e-04 

1.6679e+0
0 
1.9077e+0
1 
4.0976e+0
0 

1.9998e+0
1 
2.0000e+0
1 
8.2108e-04 

1.6679e+0
0 
1.9077e+0
1 
4.0976e+0
0 

1.9998e+0
1 
2.0000e+0
1 
8.2108e-04 

1.6679e+0
0 
1.9077e+0
1 
4.0976e+0
0 

1.6679e+0
0 
1.9077e+0
1 
4.0976e+0
0 

0 

Bohachevsky
1  

Best 
Mea
n 
Std 
Dev 

4.2316e-04 
4.6401e-03 
6.4389e-03 

1.4268e-02 
3.0762e-02 
1.3988e-02 

4.2326e-04 
4.6411e-03 
6.4389e-03 

1.4277e-02 
3.0762e-02 
1.3988e-02 

4.2326e-04 
4.6401e-03 
6.4389e-03 

1.4277e-02 
3.0762e-02 
1.3988e-02 

1.4287e-02 
3.0762e-02 
1.3988e-02 

0 

Schaffer  
Best 

1.4636e+0
2 

1.6119e+0
2 

 
2.7636e+0
2 

 
1.6119e+0
2 

 
2.7636e+0
2 

 
1.6119e+0
2 

 
1.6119e+0
2 
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Function (Fn)  DOA-LF DOA WSO SFO SOA GJO AVOA Global 
minimu

m 
function 

value 

Mea
n 
Std 
Dev 

2.8630e+0
4 
8.5402e+0
4 

3.9598e+0
2 
 
2.2181e+0
2 

2.8630e+0
4 
8.5402e+0
4 

3.9598e+0
2 
2.2181e+0
2 

2.8630e+0
4 
8.5402e+0
4 

3.9598e+0
2 
2.2181e+0
2 

3.9598e+0
2 
2.2181e+0
2 

Pathologic Best 
Mea
n 
Std 
Dev 

4.0065e-03 
2.8503e-02 
2.3109e-02 

1.6706e-01 
2.7535e-01 
7.8468e-02 

4.0266e-03 
2.8503e-02 
2.3109e-02 

1.6206e-01 
2.7535e-01 
7.8468e-02 

4.0266e-03 
2.8503e-02 
2.3109e-02 

1.6206e-01 
2.7535e-01 
7.8468e-02 

1.6206e-01 
2.7535e-01 
7.8468e-02 

0 

Statistical value analysis on the stability of 
mDOA  
  The mDOA statistical value on common 
benchmark functions is shown in this subsection. 
For the unimodal and multimodal benchmark 
function, the P values attained by mDOA, DOA, 
WSO, SFO, SOA, GJO and AVOA are shown in 
Tables 6 and 7, along with comparisons with 
mDOA and other algorithms. Furthermore, 
Figures 3 and 4 show how mDOA stability 
performs best in comparison with ten classes of 
the benchmark functions. 
 

 
 

 

 
Figure 3: Statistical graph of unimodal Standard 
Functions 
 
  Figure 3 above for Sphere, Schwefel's 
2.2, and Griewank unimodal standard show that 
the box plot of the DOA-Levy method has almost 
negligible spread and clusters tightly around very 
low Final Fitness levels, indicating far more 
stability than other algorithm approaches. DOA-
Standard, SOA, AVOA on the other hand, shows 
less stability because of its significant variability 
and considerable variation in Final Fitness among 
runs. While Table 6 provides comprehensive 
details about their P value. The P value noted in 
Table 6 is quite close to the ideal value attained by 
mDOA which shows that it is more stable 
compared to other algorithms with only exception 
in Greiwalk benchmark function. It's important to 
note that mDOA shows some superior exploitation 
potential for the Sphere and Schwefel's2.22 
function. 
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Figure 4: Statistical graph of multimodal Standard 
Functions 
 
  The multimodal Standard functions 
distribution performance box stability depicted in 
Figure 4 include Rosenbrock, Rastrigin, 
Michalewicz, Bohachevsky1, Schaffer, 

Rosenbrock and Pathologic functions. The 
statistical analysis regarding their P values can be 
found in Table 7. The extremely small range of 
Final Fitness values around a mean close to 20 
indicates that the DOA-Levy approach exhibits 
more stability. In contrast, WSO, SOA, GJO and 
AVOA exhibits far less stability across runs, with a 
much wider range in Final Fitness, from close to 
zero to roughly 20. Meanwhile, mDOA performed 
more stable in the whole run with the exception in 
two benchmark functions (Rosenbrock and 
Rastrign) which account for 71.4% performance 
output. A statistically significant difference in 
stability between the two approaches is confirmed 
by the modest p-value as highlighted except for 
the Rastrigin and Rosenbrock function. The 
mDOA has better exploitative stability compared 
to standard DOA, WSO, SFO, SOA, GJO and 
AVOA. Also has better exploitation and 
exploration stability for the Step function.

 
Table 6: Unimodal statistical P-Value 

Function 
(Fn) 

 DOA-LF DOA WSO SFO SOA GJO AVOA p-
value(h=1)
- wilcoxon 

Sphere Mea
n 
Std 
Dev 

2.0725e-03  
  3.2269e-
02    

1.4602e
-02 
  
1.1079e
-01  

-1.9061e-
01 
3.7233e+0
0    

0.0000e+0
0 
0.0000e+0
0    

-
1.5316e
-05 
1.7405e
-03 

-
1.8600e
-16   
1.3188e
-15    

3.9121e
-82   
1.7441e
-81   

8.441e-01 

Schwefel2.
2 

Mea
n 
Std 
Dev 

3.9101e-01   
1.7349e+0
0    

2.6542e
-02  
 
1.2444e
-01    

3.2559e-02  
8.0073e+0
0    

0.0000e+0
0  
0.0000e+0
0    

-
4.2666e
-06 
  
1.1247e
-04    

2.2424e
-18 
9.6828e
-18    

-
1.6916e
-82   
7.5899e
-82 

4.3570e-01 

Griewank Mea
n 
Std 
Dev 

3.4328e-02    
1.1382e-01    

 -
1.4398e
-01 
 
3.2691e
-01    

-7.2771e-
01 
2.8051e+0
0    

0.0000e+0
0  
0.0000e+0
0     

-
4.2484e
-02  
 
1.3603e
-01 

-
3.8484e
-09  
 
3.2240e
-08    

6.2540e
-10 
9.0111e
-09 

2.1913e-01 

 
Table 7: Multimodal statistical P-Value 

Function 
(Fn) 

 DOA-LF DOA WSO SFO SOA GJO AVOA p-
value(h=

1)- 
wilcoxon 

Michalewicz Mea
n 
Std 
Dev 

-
2.4555e+
01    
4.9638e+
01 

-
3.0967e+
00    
6.2553e+
01 

-
3.6259e+
00 
6.0753e+
01 

-
5.6465e+
00 
5.6244e-
01    

-
5.3113e+
00 
6.7024e+
01 

-
1.2084e+
01 
5.8175e+
01 

2.1775e-
01 
4.4956e+
01 

3.4814e-
01 
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Function 
(Fn) 

 DOA-LF DOA WSO SFO SOA GJO AVOA p-
value(h=

1)- 
wilcoxon 

Rosenbrock Mea
n 
Std 
Dev 

2.6145e+
01   
3.5467e+
01 

3.0302e+
01 
3.3805e+
01 

1.1194e+
00 
1.4562e+
01 

2.8995e+
01 
8.1831e-
03    

8.0618e-
04     
9.1972e-
03 

1.1320e-
03 
3.7325e-
03 

1.0000e+
00 
2.1592e-
04 

4.0861e-
01 

Rastrigin Mea
n 
Std 
Dev 

1.0024e-
01 
8.4322e-
01 

 -
1.8504e-
01 
 
1.0059e+
00 

5.6895e-
01 
4.1988e+
00 

0.0000e+
00  
0.0000e+
00     

1.0909e-
01 
6.9642e-
01 

-7.5355e-
11 
7.3357e-
10 

-2.8443e-
11 
2.1750e-
10 

5.0987e-
01 

Ackley Mea
n 
Std 
Dev 

-
5.5484e+
00 
5.9868e+
01 

 
6.0965e+
00 
 
3.4515e+
01 

3.7080e+
00 
6.6258e+
01 

8.8818e-
16 
0.0000e+
00     

1.0000e+
01 
1.0208e+
02 

6.2901e+
00 
6.1768e+
01 

-6.9508e-
17 
1.5215e-
16    

6.0777e-
01 

Bohachevsk
y1 

Mea
n 
Std 
Dev 

-
2.4565e+
01    
4.9538e+
01 

-
3.0977e+
00    
6.3553e+
01 

-
3.8251e+
00 
6.0955e+
01 

-
5.8466e+
00 
5.7233e-
01    

-
5.6223e+
00 
6.8022e+
01 

-
1.2090e+
01 
5.8385e+
01 

2.4765e-
01 
4.4987e+
01 

3.8224e-
01 

Schaffer Mea
n 
Std 
Dev 

-
5.8414e+
00 
5.7858e+
01 

 
6.0261e+
00 
 
3.8514e+
01 

3.9000e+
00 
6.7211e+
01 

8.7828e-
16 
0.1000e+
00     

1.0020e+
01 
1.0601e+
02 

6.9801e+
00 
6.1378e+
01 

-6.9801e-
17 
1.7115e-
16    

6.0700e-
01 

Pathologic Mea
n 
Std 
Dev 

-
2.6551e+
01    
4.8438e+
01 

-
3.0064e+
00    
6.3513e+
01 

-
3.9250e+
00 
6.0023e+
01 

-
5.6666e+
00 
5.5444e-
01    

-
5.1111e+
00 
6.5025e+
01 

-
1.2224e+
01 
5.7115e+
01 

2.1885e-
01 
4.4900e+
01 

3.0014e-
01 

COMPUTATIONAL COMPLEXITY 
  The computational complexity of 
proposed mDOA algorithm is 𝑘 ←

𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖𝑛 [2. max (2 [
𝐷

3
])]  

 
Whereas, the space complexity of all algorithms 
represents the maximum quantity of allocated 
space at any given moment, which is evaluated 
during the initialization phase. In this study, the 
space complexity for all methodologies is 
examined as 𝑖 = [0.9𝑇] + 1 → 𝑇 
  However, the mean execution duration 
of the proposed mDOA algorithm in comparison to 
other algorithms is delineated in Table 8. It is 
evident that mDOA exhibits a reduced temporal 
requirement relative to alternative methodologies, 
measured in seconds. Consequently, one may 
deduce that the computational efficiency of the 

proposed enhanced algorithm significantly 
surpasses that of its competing counterparts. 
 
Table 8: Average running time of inproved mDOA 
and competitive approaches 

Algorithms Average time  (in 
seconds) 

Modified Dream 
Optimization 
Algorithm (mDOA) 
Dream Optimization 
Algorithm (DOA) 
White Shark 
Optimization (WSO) 
Seagull Optimization 
Algorithm (SOA) 
Sunflower 
Optimization (SFO) 

1.5245 
 
 
 
1.8000 
 
 
1.7636 
 
 
1.6246 
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Algorithms Average time  (in 
seconds) 

Golden Jackal 
Optimization (GJO) 
African Vultures 
Optimization 
Algorithm (AVOA) 

 
 
2.7891 
2.7333 
2.8766 

 
CONCLUSION 
  Using  levy flight, this research 
introduces an enhance version of the Dream 
Optimisation Algorithm.The levy flight inherent in 
the position update phase was used to develop  
modified DOA algorithm called the mDOA 
algorithm. ten standard optimization functions 
were used to assess the improved mDOA's 
performance. Multimodal and unimodal standard 
optimization functions (Ackley, Griewangk, 
Michalwicz, Rastrigin Rosenbrock, Shwefel, 
Bohachevsky1 Schaffer, Pathologic and Sphere) 
comprise these functions. According to the 
simulation results, mDOA outperformed and  
attaining the optimal global solution in 7 out of 10 
cases, constituting 70.0% of the benchmark 
functions. it demonstrated 85% enhancement in 
its convergence towards global optima. Except for 
the Ackley and Rosenbrock  function, where other 
algorithms has outperformed mDOA, this provides  
a greater capacity to escape local minima than the 
normal DOA, WSO. AVOA, GJO , SOA and SFO. 
overall performance on the benchmark  test suites 
the mDOA, showing better convergence,  stability, 
significance, and reliability, over most of the 
algorithms compared with in this research. 
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