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ABSTRACT
This manuscript elucidates a novel Modified Dream Optimization ‘:'TTT.'CLE. INFO
, \ icle History
Algorithm (mDOA). The foundational framework of the Dream  Received: September, 2025
Optimization Algorithm (DOA) is informed by the cognitive phenomena  Received in revised form: October, 2025
associated with human dreaming. These cognitive mechanisms Accepted: January, 2026
(memory retention, forgetfulness, supplementation strategies, and ~ PuPished online: January, 2026
dream sharing processes) are Systematically encoded as an  KeywoRDS
optimization agent designed to tackle global optimization dilemmas.  Dream Optimization Algorithm, Exploitation,
The DOA is afflicted by the challenge of an imbalance between Exploration, Levy flight and Benchmark
exploration and exploitation, exhibiting a higher propensity for ~Function
exploration than for exploitation, which results in an elevated likelihood
of becoming ensnared in local optima. The enhancement of mDOA
was achieved through the integration of a Levy flight variant to boost
the exploitation phase. The efficacy of mDOA is evaluated against six
prominent metaheuristics utilizing ten benchmark test functions
(Schwefel, Ackley, Michalewicz, Griewank, Pathologic, Rastrigrin,
Rosenbrock, Schaffer, Sphere, and Bohachevsky1), it demonstrated
85% enhancement in its convergence towards global optima. From the
simulation results obtained, it shows that the mDOA succeeded in
attaining the optimal global solution in 7 out of 10 cases, constituting
70.0% of the benchmark functions. Conversely, the Other algorithms
used achieved 3 out of 10 cases, representing 30.0% of the
benchmark functions. These shows an improvement in the mDOA.

INTRODUCTION because there is iregular in their search

The use of nature-inspire optimization
methodologies in recent years has demonstrated
efficiency in addressing different types of
optimization ~ issues  with  considerable
performance [1]. Optimization comprises a
systematic approach for initiating solutions to
challenges that are confined by specific limitations
through the most effective utilization of available
resources. The same outcome is produced by
decisive search algorithms if the inceptive
conditions remain the same. Even when the initial
conditions remain stable, stochastic algorithms
generate definite solutions every time they run

procedure [2]. Universal optimization algorithms,
analytical intelligence, and contemporary soft
computing paradigms extensively depend on
metaheuristic approaches that are inspired by
natural phenomena. Optimization algorithms
come in two varieties: deterministic and
stochastic. [3].

Past studies as classified Stochastic
algorithms as either heuristic or metaheuristic.
The heuristic methodology is limited to a single
type of optimization problem, making them
problem dependent. The metaheuristic-based
search  algorithm is  problem-independent
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universal problem solver algorithm that is used to
tackle a variety of optimization problems [4]. The
metaheuristic  search  algorithms  combine
exploitation  (intensification) and exploration
(diversification). To find the optimal local solutions
inside the search space, the algorithm is directed
by the exploration process. The exploitation
procedure directs the algorithm to search among
the generated local optimal for the global optimum
solution. In finding a balance between exploration
and exploitation, the metaheuristic search
algorithm can connect with the global optimum
result [5].

Metaheuristic search algorithms draw
inspiration from biological systems. Numerous
optimization challenges have been solved using
these nature-inspired metaheuristic ~search
algorithms [6]. Particles swarm are an illustration
of a metaheuristic search algorithm influence by
nature. Swarms of birds and fish shoal served as
inspiration for swarm optimization [7]. However,
classical PSO still has some weaknesses, such as
poor local search that may lead to traps in local
minimum affecting the convergence performance
that results in uncertainties in the outcomes
obtained|8].

The firefly algorithm simulates flashing
behavior of fireflies [9], while the cat swarm
optimization algorithm imitates the hunting and
stalking manners of cats towards their target [10],
The echolocation behavior of microbats is
mimicked by bat algorithms [11], while the
foraging behavior of ant colonies is mimicked by
ant colony optimization algorithms [12]. The
Dream Optimization Algorithm (DOA) was
motivated by desire [13], which shares many
properties with the optimization process in
metaheuristic ~ algorithms, including  partial
memory retention, forgetting, and logical self-
organization.

To stabilize exploration and exploitation,
DOA incorporate a fundamental memory method,
a forgetting and supplementing technique, and a
dream-sharing strategy to enhance the amplitude
to escape local optima. Exploration and
exploitation phases make up the optimization
process, which produces good optimization
outcomes. According to the literature review, DOA

offers potential benefits over other metaheuristic
algorithms including Particle Swarm Optimization
(PSO) [14], Grey Wolf Optimization (GWO) [15],
Sparrow  Search  Algorithm  (SSA)  [16],
Differentiated Creative Search (DCS) [17], Great
Wall Construction Algorithm (GWCA) [18], and
Whale Optimization Algorithm (WOA) [19], among
others. Strong convergence, progress, stability,
adaptability, resilience, and reliability to initial
control parameter values are some of these
benefits. The dream optimization method still has
an imbalance issue despite these many benefits,
allying exploration and exploitation because of the
continual impact of control settings, optimization
hyperspace, and incomplete knowledge.

The paper employed levy flying process
to produce an improved Dream Optimization
Algorithm. The capacity of the mDOA algorithm
was estimated to be using ten (10) standard test
functions, the outcome of the results was contrast
to those of the traditional DOA, White Shark
Optimization  (WSQ), Seagull Optimization
Algorithm (SOA), Sunflower Optimization (SFO),
Golden Jackal Optimization (GJO) and African
Vultures  Optimization ~ Algorithm  (AVOA).
Comparison demonstrated the dominance of the
mDOA algorithm over the other algorithm. The
contribution of this paper is the modification of
DOA using levy flight variant.

The report's remaining sections are
assembled as follows: Section 2 introduces the
DOA algorithm and its levy flight. In Section 3, the
proposed mDOA result is shown. In Section 4, the
effectiveness of mDOA is evaluated and
compared to the traditional DOA and others
algorithms approach.

RESEARCH DESIGN METHOD
Concept of DOA Algorithm

Optimization algorithm assumptions
When integrating the attributes of
human aspirations with the principles of
optimization algorithms, we delineate the
subsequent four postulations:
1. Fitness values can be used to assess
the quality of dreams.

Corresponding author: Kazeem Lawal

B4 dawooddahiru@gmail.com

Department of Electrical and Electronics Engineering, Faculty of Engineering, Nigerian Defence Academy, Kaduna.
© 2026. Faculty of Technology Education. ATBU Bauchi. Al rights reserved


http://www.atbuftejoste.net/
mailto:dawooddahiru@gmail.com

(CLLITPS

3 2)
\ A JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 14(1), JANUARY, 2026

E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Joumal homepage: www.atbufstejoste.com

2. The basis of pre-existing memories is
intimately linked to the beginning of a
dream.

3. People add logically self-organized
information to partially forgotten
memories.

4, Memory capacites are rather
unpredictable and vary between
people or groups.

The dream optimization method is
developed based on these fundamental
presumptions. These four  underlying
presumptions are reflected in the procedural
architecture, exploration phase, and various
approaches used during the algorithm's
development phase.

Initialization phase

In order to initiate the algorithm's
optimisation process, mDOA first creates a
random sample inside the search space called the
initial sample. The initial sample can be acqured
using equation 1:
Xi =Xl +Tad X (Xu _Xl)' i =
1,2, . N (1)

where N is the number of individuals, i.e., the
sample size. X; is the ith individual in the sample;
X, and X; for the lower and upper boundaries of
the search space, accordingly. The resulting
sample can be shown as follows: rad is a Dim-
dimensional vector, where each proportion is a
random number between 0 and 1.

X X111 Xipim
X=[X]=|: =~ : 2)
Xn XN,1 XN,Dim
Where X;;, denotes the location of the ith

individual in the jth dimension, and Dim denotes
the dimensionality of the optimization issue.

Exploration Phase
The formulas and particular update
mechanism are as follows:

Memory strategy

First, group g members can reset their
formation by recalling the formation position of
their group's best member before dreaming,
according to the foundational memory technique.
position to that of the best member of the group:
Xitt = Xlgestq )

Where X}** denotes the ith person at iteration
t+1 and X,Eestq denotes the best individual in
group q at iteration t.

Forgetting and supplementation strategy

The forgetting and supplementing
approach combines local and global search
capabilities. This strategy, which is like the
memory technique, enables people to self-
organize and forget the position information in the
forgetting dimensions. The following is the revised
formula:

XG = Xborgs + (Xy +rand x (X, —
le)) X =X (cos (n X M) +

Tm ax

1), j =Ky Ky o K, (3)

Where X[ 1; tthe position of the ith individual
in the jth dimension at iteration t + 1: the
Xhbestq; indicate a position of the best location in
group q in the jth dimension at iteration t; X;; and
Xyj represent the minimum and maximum
bounds of the search space in the jth dimension,
respectively; rand is a random number between
0 and 1;t is the current iteration number, T, iS
the maximum number of iterations, and T} is the
maximum number of iterations during the
exploration phase.

Dream-sharing strategy

In mDOA, the dream-sharing technique
improves the capacity to break out of local optima.
People can randomly gather position information
from others in the forgetting dimensions using this
method, which functions in agreement with the
forgetting and augmenting methods and follows
the memory strategy. The following is the update
formula:
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t+1 P
Xt = Xmj, M 1 j=
XL, i<m<N
Ky, Ky e oo o Ky, 4)

Where X, l-fj“, is the location of the ith person in the
jth dimension at iteration t+1; m is a arbitrarily
chosen natural number from the range [1,N] for
each dimension update.

Exploitation Phase

The Levy Flight (LF) was used to
enhance the exploitation phase; grouping is no
longer done throughout the stage of development
(iteration count from T, t0 Ty,q,)- The population
shows the best dream from the past iterations of
the entire population or the best individual from the
previous iterations before each dreaming session.
Each person's whereabouts in the forgetting
dimensions is then updated. The number of
forgetting dimensions k.. is the same for every
member of the population. The locations in the k..
forgetting dimensions—designated as
Ki, Ky oo oo K, are updated once they are
randomly chosen from the D dimensions.

The improving method is like Equation
(2) and (3), with the update formula as follows:

a. Memory strategy

XL'H1 = Xpest ()

where X/*1 is the ith individual at iteration ¢ +
1 ,and X}, indicate the best person of the
sample at a given iteration t.

Forgetting and supplementation strategy

Xff+1 = Xlgestj + (Xij + rand X (Xuj —
ij))X§><(cos(nth )+1), j=

max

Ky Ky oo Kie, (6)

Where X[;** is the position of the ith individual
in the jth dimension at iteraton t+ 1,
Xpestj denotes the position of the best person of
the entire population in the jth dimension at
iteration ¢; X;; and X,,; are the minimum and
maximum bounds of the search space in the jth

dimension, respectively; rand is a arbitra
number between 0 and 1; t is the currentiteration
number, and T, is the maximum number of
iterations for the algorithm.

In a similar vein, Eq. (5) demonstrates
that in dimensions other than
K1, K5 o o .. Ky, individuals are able to
preserve the exact placements in these
dimensions while dreaming by recalling the
position information of the best position in the
population during prior iterations.Equation (6)
demonstrates that in dimensions
K1, Ky oo .. Ky, people forget the location
of the population's finest person during the prior.

Levy Flight Algorithms

A Levy flight algorithm represents a
specific variant of random walk distinguished by
step lengths that adhere to a Levy distribution,
which is characterized by a power-law talil,
resulting in infrequent long jumps interspersed
with shorter movements. This distinctive pattern is
employed in numerous optimization algorithms,
especially within the realm of mathematics, to
augment both exploration and exploitation
capabilities. The functionalities of the Levy flight
are operationalized as

Le'vy(n,d) = Ivl+/5' u~N(0,0?),
v~N(0,1) (7
Where f = 1.5 and o is computed as:
1/B
1"(1+B).sin(n‘8/2)
148y o B2 (®)
r(5F)p2 2

In the foundational dream optimization
algorithm, the methodology demonstrates a robust
capacity for exploitation; however, it is susceptible
to becoming entrenched in local optima. To
mitigate this challenge, the paper incorporates a
Lévy flight strategy into the exploitation phase to
improve the convergence rate. Below is table 1
and 2 showing the pseudocode for both the
standard Dream Optimization Algorithm and the
modified version, denoted as DOA-LF.
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Table 1 : Standard DOA Pseudo-code

Algorithm 1 Pseudo-code of DOA

Input : Population size (N,,,q.) the lower limit
of variables (X;), the upper limit of variables
(X,), size of problem (D), the current
number of iteration (t), the number of iteration
as a demaracation (T), the maximum number
of iteration (T,,4,), forgetting dimensions of
each group and of  exploitation
(ky, ko, ks, ky ks, k)
Output: the best solution X,..; and the
minimum fitness Fitnessy g

1. Generate an initial population
X of N individuals using Egs. (2)
Check the bounds of the solution
Evaluate the fitness of the solutic
Detect the best solution X, ant
Define the current iteration t =
1
whilet < T; do
Update the best solution Xj,,¢: a1
for g=1:5do
9. Update the best solution X, a1
10. Update k, using Eq. (10)
11. Update X/*! using Eq. (4)
12. (Ky Ky oo Kiey ) =

rad perm(kq, N)

1. fori=@7 D)+

1D : (Vs vy do

14. if rad < uthen

15. Update x; ; using Eq. (5)

16. Check the bound ofXx; ;

17. else

18. Update x; ; using Eq. (6)

19. endif

20. end for

21. end for

22. Update the current number of ite
t+1

23. end while

24. whilet < T;and t < Tpudo

25. Update k, using Eq. (11)

26. Update X/** using Eq. (7)

aRown

© N o

Algorithm 1 Pseudo-code of DOA

21. (Ky, Kpy oo Ky,) =
rad perm(k,, N)

28. fori=1:Ndo

29. Update x; ; using Eq. (8)

30. Check the bound of x; ;

31. end for

32. Update the current number of ite
t+1

33. end while

Table 2; DOA with Levy Flight (DAO-LF) Pseudo-
code

Algorithm 1 Pseudo-code of DOA with Levy
Flight Enhancement

1. 1nput : population size, iterations T,
bounds Ib, ub, dimension D,
objective function fobj

2. Initialise:

3 x«
random poputation in [Ib, ub]

4. fbestd[m] « oo, shestd[m] <
empty, form=1..5

5. fbest[m] « oo, sbestd[m] «
empty, form=1,......5

6. fbestyistory <« zeros(T)

7. fori=1-

[0.9T]do
8. form=1-5do
9. ke«

random integer in [[D (8m)], [5

10. for each solution j in subgroup m do
1. fit « fobj (x;)
12. if fit < fbestd[m]then
13. fbestd[m] «
fit,sbestd[m] « x;
14. end if
15. end for
16. for each solution j in subgroup m do
17. x; < shestd[m]
18. Choose k random dimensions in
19. if rand < 0.9 then
20. step < Levy Flight (1.5D)
21. foreach h € in do
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Algorithm 1 Pseudo-code of DOA with Levy
Flight Enhancement

22.

23.
24.
25.
26.
27.

28.
29.
30.
31.
32.

33.
34.
35.
36.
37.

38.

39.
40.
41.
42.
43.
44.
45.
46.

47.
48.
49.
50.
51.
52.

53.

X[
steplh].(ub[h] —

i cos<i+@>+1

2
Apply boundary chech

end for

else

foreach h € indo

xj[h] < random element from
populatin

end for

end if

end for

if fbestd[m] < fbest then
fbest « fbestd[m],sbest «
shestd[m]

endif

end for

fbest_history[i] « fbest
end for

Wieyy < 0.5

...Weight fot Levy steps

for i=[09T]+1->T do
....Exploitation phase

forp =1 - pop do

fit « fobj(x,)

if fit < fbest then

fbest « fit,sbest < x,
endif

end for

forj =1 - pop do

k «

randominteger in [2. max (2 E]

« x;[h}+0.01

xj « shest

Choose k random dimensions in
foreach h € indo

if rand < wyeyy, then

step «Levy Flight (1.5,D)

x;[n] < x;[h]+0.01
steplh].(ub[h] —

lb[h]) cos(im+T)+1

2
else

Algorithm 1 Pseudo-code of DOA with Levy
Flight Enhancement

54.

55.
56.
57.
58.
59.

x;[h]

rand. (ub[h] —
cos(im+T)+1

lb[h]).f

end if

Apply boundary check 1

end for

end for

fbest_history[i] « fbest

« x;[h}+0.01

Code comparison to other

levy flight

developed optimization algorithms

This paper applied the Levy Flight at the

exploitation phase. The modification is as follows:

a.

Modify the forgetting and
supplementation  strategy  equation
using levy flight, from equation 6 of the
standard DOA using equation 8 for
specific variant of random walk at
exploitation phase to enhance the
convergence speed.

evaluate performance against existing
algorithms with parameters such as
convergences speed, efficiency, and
robustness.

The Levy step size is uniquely scaled by

. )+ .
a cosine-wave term 29 hich

creates a smooth, oscillatory, and non-
linear decay of step length over
iterations, differing from standard static
or linearly decreasing scales.

The number of dimensions (k) to
perturb using Levy flights is dynamically
and differently calculated per subgroup
during exploration, making the search
effort adaptive to the subgroup's role
and problem dimension.

The use of Levy flight differs
fundamentally between phases: in

exploration, it's applied around
subgroup-best  solutions  (sbestd[m])
and competes  with random

replacement, while in exploitation, it's
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applied more directly around the global Fn  Names  Description
best (sbest) with deterministic weighting F7 Michale d ix?
wicz f(x) == sin(x)sin®"| —-

Evaluation Method Fe 'E;;]Ct'on i1 74

The capacity of any improved or
developed optimization algorithm is evaluated Fo E:khy?he f (X, %,) = X +2x; —0.3c0s(37x,) — 0.4 cos(4 X
using benchmark functions, which are applied Fo  function 30 05 2
mathematical functions. As algorithms are created 28] f (X) Z (X X 1) {[sm 50(X Ly l)o 1} }
to address real-world engineering optimization Schaffer -y " a
issues, this is seen to be crucial. The set of ten function £
standard test functions given in Table 3 were [29] n
carefully selected to effectively measure the Patholog  _ Z(O,S
capacity of developed mDOA algorithms. The :cc , =
mDOAs performance measures of interest are ggcnon ] 5 2
listed as follows. (30] st (x} 100" + xi*l) -0

Execution speed: a gauge of how fast + (1+ 0.001(x? — 2x; %10y + %
the mDOA algorithm variation can find the best ! ‘
convergence. The precision of the solution, which RESULTS ANALYSIS

quantifies how closely each mDOA's results
resemble the ideal; The convergence rate: This is
utilized to ascertain when the corresponding

Convergence Comparison of mDOA
The mDOA has shown a better

mDOAs find their answer. convergence in comparison with some of the

algorithms used as shown in figures below. The

Table 3: Ten-Dimensional Standard Functions mDOA shows vibrances in convergence with other

[20] — algorithms used such as standard DOA, WSO,
Fn_ Names Description SOA, SFO, GJO and AVOA on standard
Fi E:iiﬁm f _ S functions. For the unimodal and multimodal

21] (x) = .Z‘ Xi standard function, the standard deviation, mean,
B and best values attained by mDOA and other
F2  Schwefe 30 05 algorlthms arg shown in Tables 4 and 5.
I function  f (x) Z(X + X.+1) {[Sm50 )fz‘urth mz T%ures 1 and 2 show how best
[22] ) I‘nDOA nd] qgther algorithms  perform in
comparison with unimodal and multimodal
Fs Rosenbr = ) , Sandard functions.
ock f(x) =D ((x, —1)* +100(x,,, — X,
FUnCtiOn i=1 ®10% Convergence Comparison - SPHERE
[23] ! : : ! I;DA with Levy
Fs+  Rastrigin n = = DO Senind
Functon  f (x) =10n+ )" [x7 —10c0s(27X,) :
(24] i1 5 S
Fs  Griewan »
k f(x cos 42
()= 4000 ,21: H ( £,
Function
[25] 2
Fe  Ackley 1 e, i
function i
f(X)=-20exp|—= f— |-
[26] ( ) p 5 n ; XI OU_Il 100 150 2(:0 250

Iterations
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Figure 1: Unimodal Standard Functions

Figure 1 shows the Sphere, Griewank,
and Schwefel's 2.2 unimodal standard functions.
Table 4 provides comprehensive details about
their mean, standard deviation, and best values.
The global minimum noted in Table 4 is quite close
to the ideal value attained by mDOA. Notably, the
energy function added in equation (8) allows
mDOA to perform better than the three algorithms
across all standard functions of unimodal in terms
of mean values and standard deviation. It's

important to note, though, that mDOA shows

some superior exploitation potential for the
Schwefel's2.22 function.
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Figure 2: multimodal Standard Functions

The multimodal standard functions
depicted in Figure 2 include Rosenbrock,
Rastrigin, Michalewicz, Rosenbrock,
Bohachevsky1,  Schaffer, and Pathologic
functions. The statistical analysis regarding their
standard deviation, mean, and best values can be
found in Table 5. The optimal value achieved by
mDOA, as indicated in Table 5, closely
approximates the global minimum highlighted,
except for the Ackley, Michalewicz and
Rosenbrock function. The mDOA has better
exploitative ability compared to the DOA and other
five algorithms in comparison. It exhibits better
exploitation and exploration abilities for the Step
function.

Corresponding author: Kazeem Lawal
B4 dawooddahiru@gmail.com

Department of Electrical and Electronics Engineering, Faculty of Engineering, Nigerian Defence Academy, Kaduna.
© 2026. Faculty of Technology Education. ATBU Bauchi. Al rights reserved


http://www.atbuftejoste.net/
mailto:dawooddahiru@gmail.com

JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 14(1), JANUARY, 2026
E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbufstejoste.com

Function DOA-LF DOA WSO SFO SOA GJO AVOA Global
(Fn) minimu
m
function
value
Sphere Best 4.0265e-03 4.0266e-03 1.6706e-01 4.0266e-03 1.6706e-01 1.6706e-01 0
Mean  2.8503e-02 1.6706e-01 2.8503e-02 2.7535e-01 2.7535e-01
Std 2.7535e-01 2.8503e-02 2.7535e-01 2.3109e-02 7.8468e-02 7.8468e-02
Dev 2.3109e-02 7.8468e-02  2.3109e-02
7.8468e-02
Schwefel2.2  Best 1.2339%e+0 8.8827e-02 1.233%+0 8.8727e-02 1.2339%e+0 0
Mean  8.8727e-02 0 0 1.4009e+0 1.233%e+0 0
Std 1.4009e+0 1.6050e+0 1.4009e+0 1.6050e+0 1 0 1.6050e+0
Dev 1 0 1 0 2.1106e+0 0
2.1106e+0 2.2127e-01 2.1106e+0 2.2127e-01 1 1.6050e+0 2.2127e-01
1 1 0
2.2127e-01
Griewank Best 4.2316e-04 1.4267e-02  4.2326e-04 1.4267e-02 4.2326e-04 1.4267e-02 1.4267e-02 0
Mean  4.6401e-03  3.0762e-02  4.6401e-03  3.0762e-02  4.6401e-03  3.0762e-02  3.0762e-02
Std 6.4389¢-03 1.3988e-02 1.3988e-02 6.4389¢-03 1.3988e-02 1.3988e-02
Dev 6.4389¢-03
Table 5: Multimodal Standard Functions
Function (Fn) DOA-LF DOA WSO SFO SOA GJO AVOA Global
minimu
m
function
value
Michalewicz - - - - - - -8.22015
Best 2.8797e+0 - 2.8797e+0 2.7537e+0 2.8797e+0 2.7537e+0 2.7537e+0
Mea 1 2.7537e+0 1 1 1 1 1
n - 1 - - - - -
Std 2.8282e+0 - 2.8282e+0 2.6672e+0 2.8282e+0 2.6672e+0 2.6672e+0
Dev 1 2.6672e+0 1 1 1 1 1
3.5005e-01 1 5.8910e-01 3.5005e-01 5.8910e-01 5.8910e-01
5.8910e-01
3.5005e-01
Rosenbrock 2.7636e+0 1.5119¢+0 0
Best 2 2 2.7636e+0 1.5119e+0 2.7636e+0 1.5119e+0 1.5119e+0
Mea 3.9598e+0 2 2 2 2 2
n 2.8630e+0 2 2.8630e+0 3.9598e+0 2.8630e+0 3.9598e+0 3.9598e+0
Std 4 4 2 4 2 2
Dev 8.5402e+0 2.2181e+0 8.5402e+0 2.2181e+0 8.5402e+0 2.2181e+0 2.2181e+0
4 2 4 2 4 2 2
Rastrigin Best 2.3966e+0 2.7677e+0 0
Mea 1 1 2.3966e+0 2.7677e+0 2.3966e+0 2.7677e+0 2.7677e+0
n 3.7232e+0 4.2162e+0 1 1 1 1 1
1 1 3.7232e+0 4.2162e+0 3.7232e+0 4.2162e+0 4.2162e+0
Std 8.6681e+0 8.1255e+0 1 1 1 1 1
Dev 0 0 8.6681e+0 8.1255e+0 8.6681e+0 8.1255e+0 8.1255e+0
0 0 0 0 0
Ackley Best 1.9998e+0 1.6679e+0 1.9998e+0 1.6679e+0 1.9998e+0 1.6679e+0 1.6679e+0 0
Mea 1 0 1 0 1 0 0
n 2.0000e+0 1.9077e+0 2.0000e+0 1.9077e+0 2.0000e+0 1.9077e+0 1.9077e+0
Std 1 1 1 1 1 1 1
Dev 8.2108e-04  4.0976e+0 8.2108e-04  4.0976e+0 8.2108e-04  4.0976e+0  4.0976e+0
0 0 0 0
Bohachevsky Best 4.2316e-04 1.4268e-02 4.2326e-04 1.4277e-02 4.2326e-04 1.4277e-02 1.4287e-02 0
1 Mea 4.6401e-03  3.0762e-02  4.6411e-03  3.0762e-02  4.6401e-03 3.0762e-02  3.0762e-02
n 6.4389%-03 1.3988e-02  6.4389e-03 1.3988e-02 6.4389e-03 1.3988e-02 1.3988e-02
Std
Dev
Schaffer 1.4636e+0 1.6119e+0
Best 2 2 2.7636e+0 1.6119e+0 2.7636e+0 1.6119e+0 1.6119e+0
2 2 2 2 2
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Function (Fn) DOA-LF DOA WSO SFO SOA GJO AVOA Global
minimu
m
function
value
Mea 2.8630e+0 3.9598e+0 2.8630e+0 3.9598e+0 2.8630e+0 3.9598e+0 3.9598e+0
n 4 2 4 2 4 2 2
Std 8.5402e+0 8.5402e+0 2.2181e+0 8.5402e+0 2.2181e+0 2.2181e+0
Dev 4 2.2181e+0 4 2 4 2 2
2
Pathologic Best 4.0065e-03 1.6706e-01 4.0266e-03  1.6206e-01 4.0266e-03 1.6206e-01 1.6206e-01 0
Mea 2.8503e-02  2.7535e-01 2.8503e-02  2.7535e-01 2.8503e-02  2.7535e-01 2.7535e-01
n 2.3109e-02  7.8468e-02  2.3109e-02  7.8468e-02  2.3109e-02  7.8468e-02  7.8468e-02
Std
Dev
Statistical value analysis on the stability of » Performance Distribution on griewank

mDOA

The mDOA statistical value on common
benchmark functions is shown in this subsection.
For the unimodal and multimodal benchmark
function, the P values attained by mDOA, DOA,
WSO, SFO, SOA, GJO and AVOA are shown in
Tables 6 and 7, along with comparisons with
mDOA and other algorithms. Furthermore,
Figures 3 and 4 show how mDOA stability
performs best in comparison with ten classes of
the benchmark functions.
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Figure 3: Statistical graph of unimodal Standard
Functions

Figure 3 above for Sphere, Schwefel's
2.2, and Griewank unimodal standard show that
the box plot of the DOA-Levy method has almost
negligible spread and clusters tightly around very
low Final Fitness levels, indicating far more
stability than other algorithm approaches. DOA-
Standard, SOA, AVOA on the other hand, shows
less stability because of its significant variability
and considerable variation in Final Fitness among
runs. While Table 6 provides comprehensive
details about their P value. The P value noted in
Table 6 is quite close to the ideal value attained by
mDOA which shows that it is more stable
compared to other algorithms with only exception
in Greiwalk benchmark function. It's important to
note that mDOA shows some superior exploitation
potential for the Sphere and Schwefel's2.22
function.
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Figure 4: Statistical graph of multimodal Standard
Functions

The multimodal Standard functions
distribution performance box stability depicted in

Rosenbrock and Pathologic functions. The
statistical analysis regarding their P values can be
found in Table 7. The extremely small range of
Final Fitness values around a mean close to 20
indicates that the DOA-Levy approach exhibits
more stability. In contrast, WSO, SOA, GJO and
AVOA exhibits far less stability across runs, with a
much wider range in Final Fitness, from close to
zero to roughly 20. Meanwhile, mDOA performed
more stable in the whole run with the exception in
two benchmark functions (Rosenbrock and
Rastrign) which account for 71.4% performance
output. A statistically significant difference in
stability between the two approaches is confirmed
by the modest p-value as highlighted except for
the Rastrigin and Rosenbrock function. The
mDOA has better exploitative stability compared
to standard DOA, WSO, SFO, SOA, GJO and

Figure 4 include Rosenbrock, Rastrigin, AVOA. Also has better exploitation and
Michalewicz, Bohachevsky1, Schaffer, exploration stability for the Step function.
Table 6: Unimodal statistical P-Value
Function DOA-LF DOA WSO SFO SOA GJO AVOA p-
(Fn) value(h=1)
- wilcoxon
Sphere Mea 2.0725e-03  1.4602e  -1.9061e- 0.0000e+0 - - 3.9121e  8.441e-01
n 3.2269%- -02 01 0 1.5316e  1.8600e  -82
Std 02 3.7233e+t0  0.0000e+t0  -05 -16 1.7441e
Dev 1.107% 0 0 1.7405e  1.3188e  -81
-01 -03 -15
Schwefel2. Mea 3.9101e-01  2.6542e  3.2559¢-02  0.0000e+0 - 2.2424e - 4.3570e-01
2 n 1.734%+0  -02 8.0073et0 0 4.2666e -18 1.6916e
Std 0 0 0.0000e+0  -06 96828  -82
Dev 1.2444e 0 -18 7.5899
-01 1.1247¢ -82
-04
Griewank Mea  34328e02 - 72771e-  0.0000e+0 - - 6.2540e  2.1913e-01
n 1.1382e-01 14398 01 0 42484  3.8484e  -10
Std -01 2.8051e+t0  0.0000e+0  -02 -09 9.0111e
Dev 0 0 -09
3.2691e 1.3603e  3.2240e
-01 -01 -08
Table 7: Multimodal statistical P-Value
Function DOA-LF DOA WSO SFO SOA GJO AVOA -
(Fn) value(h=
1)-
wilcoxon
Michalewicz Mea - - - - - - 2.1775e- 3.4814e-
n 24555e+  3.0967e+  3.6259e+  5.6465e+  5.3113e+  1.2084e+ 01 01
Std 01 00 00 00 00 01 4.4956e+
Dev  49638e+ 6.2553e+ 6.0753e+  56244e-  6.7024e+ 58175+ 01
01 01 01 01 01 01
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Function DOA-LF DOA WSO SFO SOA GJO AVOA p-
(Fn) value(h=
1)-
wilcoxon
Rosenbrock  Mea  2.6145e+  3.0302e+  1.1194e+  2.8995e+  8.0618e-  1.1320e-  1.0000e+  4.0861e-
n 01 01 00 01 04 03 00 01
Std  3.5467e+  3.3805e+  1.4562e+  8.1831e-  9.1972e-  3.7325e 2.1592e
Dev 01 01 01 03 03 03 04
Rastrigin Mea  1.0024e- - 5.6895¢ 0.0000e+  1.0909e-  -7.5355e-  -2.8443e-  5.0987e-
n 01 1.8504e- 01 00 01 11 11 01
Std  84322e- 01 4.1988e+  0.0000e+  6.9642e-  7.3357e 2.1750e
Dev 01 00 00 01 10 10
1.0059e+
00
Ackley Mea - 3.7080e+  8.8818e-  1.0000e+  6.2901e+  -6.9508e-  6.0777e-
n 55484e+  6.0965e+ 00 16 01 00 17 01
Std 00 00 6.6258e+  0.0000e+  1.0208e+  6.1768e+  1.5215e
Dev  5.9868e+ 01 00 02 01 16
01 3.4515e+
01
Bohachevsk Mea - - - - - - 2.4765e-  3.8224e-
y1 n 2.4565e+  3.0977e+  3.8251e+  5.8466e+  5.6223e+  1.2090e+ 01 01
Std 01 00 00 00 00 01 4.4987e+
Dev  4.9538et+  6.3553e+  6.0955e+  57233e-  6.8022e+  5.8385e+ 01
01 01 01 01 01 01
Schaffer Mea - 3.9000e+  8.7828e- 1.0020e+  6.9801e+  -6.9801e-  6.0700e-
n 5.8414e+  6.0261e+ 00 16 01 00 17 01
Std 00 00 6.7211e+  0.1000e+  1.0601e+  6.1378e+  1.7115e-
Dev  5.7858e+ 01 00 02 01 16
01 3.8514e+
01
Pathologic Mea - - - - - - 2.1885e-  3.0014e-
n 2.6551et+  3.0064e+  3.9250e+  5.6666e+ 5.1111e+  1.2224e+ 01 01
Std 01 00 00 00 00 01 4.4900e+
Dev  4.8438e+ 6.3513e+  6.0023e+  5.5444e- 6.5025e+  5.7115%e+ 01
01 01 01 01 01 01
COMPUTATIONAL COMPLEXITY proposed enhanced algorithm  significantly

The computational
proposed  mDOA  algorithm s

randominteger in [2. max (2 E])]

complexity  of
k «

Whereas, the space complexity of all algorithms
represents the maximum quantity of allocated
space at any given moment, which is evaluated
during the initialization phase. In this study, the
space complexity for all methodologies is
examinedasi = [09T]+1 - T

However, the mean execution duration
of the proposed mDOA algorithm in comparison to
other algorithms is delineated in Table 8. It is
evident that mDOA exhibits a reduced temporal
requirement relative to alternative methodologies,
measured in seconds. Consequently, one may
deduce that the computational efficiency of the

surpasses that of its competing counterparts.

Table 8: Average running time of inproved mDOA
and competitive approaches

Algorithms Average time (in
seconds)

Modified Dream 1.5245

Optimization

Algorithm (mDOA)

Dream  Optimization

Algorithm (DOA) 1.8000

White Shark

Optimization (WSO)

Seagull Optimization 1.7636

Algorithm (SOA)

Sunflower

Optimization (SFO) 1.6246
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Algorithms Average time (in
seconds)

Golden Jackal

Optimization (GJO)

African Vultures  2.7891

Optimization 2.7333

Algorithm (AVOA) 2.8766

CONCLUSION

Using  levy flight, this research
introduces an enhance version of the Dream
Optimisation Algorithm.The levy flight inherent in
the position update phase was used to develop
modified DOA algorithm called the mDOA
algorithm. ten standard optimization functions
were used to assess the improved mDOA's
performance. Multimodal and unimodal standard
optimization  functions (Ackley, Griewangk,
Michalwicz, Rastrigin Rosenbrock, Shwefel,
Bohachevsky1 Schaffer, Pathologic and Sphere)
comprise these functions. According to the
simulation results, mDOA outperformed and
attaining the optimal global solution in 7 out of 10
cases, constituting 70.0% of the benchmark
functions. it demonstrated 85% enhancement in
its convergence towards global optima. Except for
the Ackley and Rosenbrock function, where other
algorithms has outperformed mDOA, this provides
a greater capacity to escape local minima than the
normal DOA, WSO. AVOA, GJO , SOA and SFO.
overall performance on the benchmark test suites
the mDOA, showing better convergence, stability,
significance, and reliability, over most of the
algorithms compared with in this research.

REFERENCES

[1] Yang, X.-S. “Nature-inspired metaheuristic
algorithms: Success and new
challenges”. 2012. p1211.6658.

[2] Yiimaz, S., & Kigliksille, E. U. “A new
modification approach on bat algorithm
for solving optimization problems”.
Applied Soft Computing, 2015 p28,
259-275.

[3] Yang, X.-S. “Firefly algorithm, stochastic test
functions and design optimization”.
2010a. International Journal of Bio-
Inspired Computation, 2(2), 78-84.

[4] Shehab, M., Khader, A. T., & Al-Betar, M. A.
“A survey on applications and variants
of the cuckoo search algorithm”. 2017.
Applied Soft Computing.

[5] Civicioglu, P., & Besdok, E. “A conceptual
comparison of the Cuckoo-search,
particle swarm optimization, differential
evolution and artificial bee colony
algorithms”. Artificial intelligence
review, 1-32. 2013.

[6] Yang, X.-S., & Deb, S. “Cuckoo search via
Lévy flights. Paper presented at the
Nature & Biologically Inspired
Computing”, 2009. NaBIC 2019.

[7] Eberhart, R. C., & Kennedy, J. “A new
optimizer using particle swarm theory”.
1995.

[8] V.K. Pathak, A.K. Singh, Optimization of
morphological process parameters in
contactless laser scanning system
using modified particle swarm
algorithm, Measurement (2017),

[9] Yang, X.-S. “Firefly algorithms for multimodal
optimization. Paper presented at the
International Symposium on Stochastic
Algorithms”. 2019.

[10] Chu, S.-C., Tsai, P.-W., & Pan, J.-S. “Cat
swarm optimization”. Paper presented
at the Pacific Rim International
Conference on Artificial Intelligence.
2016.

[11] Yang, X.-S. “A new metaheuristic algorithm
cooperative Nature strategy bat-
inspired inspired for optimization”
(NICSO 2010) (pp. 65-74): Springer.
2010b.

[12] Dorigo, M., & Thomas, S. “Ant Colony
Optimization”. Cambridge, vol. 9, Dec.
20012: MIT Press. 2012.

[13] Lang, Y.; Gao, Y. Dream Optimization
Algorithm (DOA): A novel metaheuristic
optimization algorithm inspired by
human dreams and its applications to
real-world engineering problems.
Comput. Methods Appl. Mech. Eng.
436, 117718, 2025.

[14] Dongshu Wang, Dapei Tan, Lei Liu, Particle
swarm optimization algorithm: an

Corresponding author: Kazeem Lawal

B4 dawooddahiru@gmail.com

Department of Electrical and Electronics Engineering, Faculty of Engineering, Nigerian Defence Academy, Kaduna.
© 2026. Faculty of Technology Education. ATBU Bauchi. Al rights reserved


http://www.atbuftejoste.net/
mailto:dawooddahiru@gmail.com

JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 14(1), JANUARY, 2026
E-ISSN: 3093-0898, PRINT ISSN: 2277-0011; Journal homepage: www.atbufstejoste.com

overview, Soft Comput. 22 (2018) 387-
408

[15] Seyedali Mirjalili, Seyed Mohammad Mirjalili,
Andrew Lewis, Grey wolf optimizer,
Adv. Eng. Softw. 69 (2014) 46-61.

[16] Jiankai Xue, Bo Shen, A novel swarm
intelligence optimization approach:
sparrow search algorithm, Syst. Sci.
Control Eng. 8 (1) (2020) 22-34

[17] Poomin Duankhan, Khamron Sunat, Sirapat
Chiewchanwattana, Patchara Nasa-
ngium, The Differentiated Creative
search (DCS): Leveraging
Differentiated knowledge-acquisition
and Creative realism to address
complex optimization problems, Expert
Syst. Appl. (2024) 123734.

[18] Ziyu Guan, Changjiang Ren, Jingtai Niu,
Peixi Wang, Yizi Shang, Great Wall
Construction Algorithm: A novel meta-
heuristic algorithm for engineer
problems, Expert Syst. Appl. 233
(2023) 120905

[19] Seyedali Mirjalili, Andrew Lewis, The whale
optimization algorithm, Adv. Eng.
Softw. 95 (2016) 51-67.

[20] Salawudeen, A. T., Mu'azu, M. B., Yusuf, A.,
& Adedokun, A. E. “A Novel Smell
Agent Optimization (SAO)”: An
extensive CEC study and engineering
application. Knowledge-Based
Systems, 232, 107486. 2021.

[2] Wu, Y., Gao, X. Z., & Zenger, K.
1*Knowledge-based Artificial Fish-
Swarm algorithm”. Paper presented at
the 18th IFAC World Congress, Milano.
2011.

[22] Tang, K., Yao, X., Suganthan, P. N.,
MacNish, C., Chen, Y.-P., Chen, C.-M.,
& Yang, Z. “Benchmark functions for
the CEC’2008 special session and
competition on large scale global
optimization”. Nature Inspired
Computation and Applications
Laboratory, USTC, China. 2007.

[23] Momin, J., & Yang, X. S. “A literature survey
of benchmark functions for global
optimization problems”. International
Journal of Mathematical Modelling and
Numerical Optimization, 4(2), 150-194.
2013.

[24] Wang, Y., Ma, J., & Wang, Y. Application of
ant colony algorithm in path planning of
the data center room robot. Paper
presented at the AIP Conference
Proceedings. 2017.

[25] Hansen, N. “Compilation of results on the
2005 CEC benchmark function set”.
Online, May. 2006.

[26] Salawudeen, A. T. “Development of an
Improved Cultural Artificial Fish Swarm
Algorithm with Crossover”. (Master of
Science Thesis), Ahmadu Bello
University Zaria, Nigeria., Kubani. (25)
2015.

[27] Jamil, M., & Yang, X.-S. “A literature survey
of benchmark functions for global
optimization problems. International
Journal of Mathematical Modelling and
Numerical Optimizations, 4(2), 150-
194.2013.

[28] Yang, X.-S. (2010). A new metaheuristic bat-
inspired algorithm Nature inspired
cooperative strategies for optimization.
Nature Inspired Cooperative Strategies
for Optimization 2010 Springer. 65-7

[29] Li, X., Tang, K., Omidvar, M. N., Yang, Z.,
Qin, K., & China, H. Benchmark
functions for the CEC 2013 special
session and competition on large-scale
global optimization. 2013.

[30] Rahnamayan, S., Tizhoosh, H. R., &
Salama, M. M. A novel population
initialization method for accelerating
evolutionary algorithms. Computers &
Mathematics with Applications, 53(10),
1605-1614. 2007.

Corresponding author: Kazeem Lawal

B4 dawooddahiru@gmail.com

Department of Electrical and Electronics Engineering, Faculty of Engineering, Nigerian Defence Academy, Kaduna.
© 2026. Faculty of Technology Education. ATBU Bauchi. Al rights reserved


http://www.atbuftejoste.net/
mailto:dawooddahiru@gmail.com

